Residual finiteness and strict distortion of cyclic subgroups of solvable groups
نویسندگان
چکیده
منابع مشابه
Finite $p$-groups and centralizers of non-cyclic abelian subgroups
A $p$-group $G$ is called a $mathcal{CAC}$-$p$-group if $C_G(H)/H$ is cyclic for every non-cyclic abelian subgroup $H$ in $G$ with $Hnleq Z(G)$. In this paper, we give a complete classification of finite $mathcal{CAC}$-$p$-groups.
متن کاملPOS-groups with some cyclic Sylow subgroups
A finite group G is said to be a POS-group if for each x in G the cardinality of the set {y in G | o(y) = o(x)} is a divisor of the order of G. In this paper we study the structure of POS-groups with some cyclic Sylow subgroups.
متن کاملSubgroups of Cyclic Groups
In a group G, we denote the (cyclic) group of powers of some g ∈ G by 〈g〉 = {g : k ∈ Z}. If G = 〈g〉, then G itself is cyclic, with g as a generator. Examples of infinite cyclic groups include Z, with (additive) generator 1, and the group 2Z of integral powers of the real number 2, with generator 2. The most basic examples of finite cyclic groups are Z/(m) with (additive) generator 1 and μm = {z...
متن کاملSubgroups and cyclic groups
Example 1.2. (i) For every group G, G ≤ G. If H ≤ G and H 6= G, we call H a proper subgroup of G. Similarly, for every group G, {1} ≤ G. We call {1} the trivial subgroup of G. Most of the time, we are interested in proper, nontrivial subgroups of a group. (ii) Z ≤ Q ≤ R ≤ C; here the operation is necessarily addition. Similarly, Q∗ ≤ R∗ ≤ C∗, where the operation is multiplication. Likewise, μn ...
متن کاملA-Generated Subgroups of A-Solvable Groups
In the discussion of A-solvable groups, the question arises if a torsion-free abelian group A of finite rank is flat as a module over its endomorphism ring if every A-generated subgroup of a torsion-free A-solvable group is A-solvable. This paper gives a negative answer by constructing a torsion-free group of rank 3 for which all A-generated torsion-free groups are A-solvable, although A is not...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2020
ISSN: 0021-8693
DOI: 10.1016/j.jalgebra.2019.11.011